
Warm-Up!
1. There are two possible outcomes for the first flip (H,T). For each of these, there are two 
possible outcomes for the second flip; this is a total of four sequences (HH, HT, TH, TT). 
For each of these, there are two possible outcomes for the third flip; this is a total of eight 
sequences. Repeating this multiplication by 2, we can see that the total number of possible 
7-flip sequences is 27 = 128.

2. Let’s rewrite the set as {M, L, H, B, N}. The empty set is 1 subset. There are 5 subsets of one 
element (or person) each: {M}, {L}, {H}, {B}, {N}. How many two-element subsets are there? Or, 
how many groups of two can be selected from a group of 5? The answer can be represented 
as “five choose two” or 5C2 = (5!)/((2!)(3!)) = 10. Similarly, how many three-element subsets 
are there? This will also be 10 since for every two-element subset we included, there was a 
complementary three-element subset we left out. (In other words, when we counted {M, L} as 
a two-element subset, we simultaneously found {H, B, N} as a three-element subset.) Similarly, 
there are 5 subsets of four elements (to complement the 5 subsets of one element) and 1 
subset of five elements (to complement the 1 empty set). The total is 1 + 5 + 10 + 10 + 5 + 1 = 
32 subsets.

3a. Dividing 100 (the smallest possible positive three-digit integer) by 7, we see the answer is 
a little more than 14. Therefore 15 × 7 is the smallest positive three-digit multiple of 7. Dividing 
999 (the largest possible positive three-digit integer) by 7, we see the answer is a little more 
than 142, so the largest positive three-digit multiple of 7 is 142 × 7. Using 15 through 142, there 
are 142 –14 = 128 positive three-digit multiples of 7. 

3b. There are 999 – 99 = 900 positive three-digit integers. Therefore, 900 – 128 = 772 of them 
are not multiples of 7.

4. The positive five-digit integers are 10,000 through 99,999. There are 99,999 – 9999 = 90,000 
of them. Let’s count how many of them do not have any zeros. The first digit could be any 
digit from 1 through 9. Similarly, each of the four digits after the first is limited to those nine 
options since we don’t want any zeros in our number. This means there are 9 × 9 × 9 × 9 × 9 = 
95 = 59,049 positive five-digit integers that do not have any zeros. Therefore, there are 
90,000 – 59,049 = 30,951 positive five-digit integers that have at least one zero.

5. Rather than finding the numbers that are not perfect squares, let’s figure out which numbers 
are perfect squares within the range. The perfect square 122 = 144 is just too small. The first 
perfect square within the range is 132 = 169. Similarly, 192 = 361 is just too big, but 182 = 324 is 
within the range. Therefore, the perfect squares 132 through 182 are within the range. That’s 
18 – 12 = 6 perfect squares. The range only includes the numbers between 150 and 350, so 
that’s 349 – 150 = 199 numbers. We’ve determined 6 of them are perfect squares, so 199 – 6 = 
193 are not perfect squares.

The Problem is solved in the MATHCOUNTS Mini.

Follow-up Problems
6. A subset of the set {M, A, T, H, C, O, U, R, S, E} may contain 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 
letters. As with the problem presented in the MATHCOUNTS Mini, consider that each of the 10 
letters must choose whether to be in the subset or not. That means there are a total of 
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210 = 1024 subsets. To determine the number of subsets with at least two letters we need 
to exclude the empty set and those subsets containing only one letter. That includes 
10C0 + 10C1 = 1 + 10 = 11 subsets. Therefore, the number of subsets that contain at least two 
letters is 1024 ‒ 11 = 1013 subsets.

7. There are a total of 999 ‒ 99 = 900 positive three-digit numbers. If exactly one digit must be 
zero it can only be the tens digit or the units digit. So we can select which digit is zero in 2 ways. 
The remaining two digits cannot be zero, therefore, they can be chosen in 9 × 9 different ways. 
The total number of positive three-digit numbers that contain exactly one zero is then 2 × 9 × 9 = 
162.

8. With no restrictions, each letter in the five-letter “word” can be one of four letters, so there are 
4 × 4 × 4 × 4 × 4 = 45 = 1024 possible five-letter words. Let’s see how many of these words have 
no vowels. There would be only two choices for each letter (C or G), so there are 
2 × 2 × 2 × 2 × 2 = 25 = 32 possible five-letter words. This means there are 1024 ‒ 32 = 992 five-
letter words with at least one vowel.

9. Let X represent the units digit which makes the thousands digit 2X. Since 0 × 2 = 0 and the 
first digit cannot be zero we can exclude 0 from the possible values of X. If X = 5 we have 2(5) = 
10, a two-digit number and thus not a candidate for the first digit. For this reason X cannot have 
a value greater than 4. Thus the possible values of X that would result in a positive four-digit 
number are 1, 2, 3 and 4. In each of these four cases the tens digit and hundreds digit can be 
any of the ten numerals 0 to 9, and the thousands digit is pre-determined by the units digit. 
It follows that the there are 1 × 10 × 10 × 4 = 400 positive four-digit numbers such that the 
thousands digit is double the units digit. 

10. With 9 students there are a total of 9! = 362,880 different ways to seat them in a row. There 
are many seating arrangements with at least 2 girls next to each other. Consider, instead, the 
number of arrangements where no girls are seated next to each other. That only can occur 
if the seats are arranged G-B-G-B-G-B-G-B-G where G is a girl and B is a boy. Since there 
are a total of 5 girls in the class they can be seated in 5! different orders. The four boys in the 
class can be seated in 4! different orders. Thus there are (5!)(4!) = 120 × 24 = 2,880 different 
possible seating arrangements in which two girls are not seated next to each other. If we 
exclude these arrangements from the total number of seating arrangements, we see that there 
are 362,880 ‒ 2880 = 360,000 ways the students can be seated such that at least two girls are 
seated next to each other.

11. There are twenty-six letters in the alphabet so the first letter in the sequence can be chosen 
in 26 different ways. If no two adjacent letters can be the same that leaves only 25 different 
choices for the second letter in the sequence. Since the third letter cannot be the same as the 
second letter but may be the same as the first letter, there are again 25 choices for this letter. 
The same is true for the fourth and fifth letters in the sequence. So there are 
26 × 25 × 25 × 25 × 25 = 10,156,250 sequences of five letters in which no two adjacent letters 
are the same.

12. There are 9,999 ‒ 999 = 9,000 positive four-digit numbers. Rather than counting the amount 
of four-digit numbers with a repeated digit, we’ll count the amount of four-digit numbers with 
four distinct digits. There are only 9 ways to select the first digit since it cannot be zero. But the 
second digit cannot be the same as the first which leaves only 9 ways to select that digit (since 
it may be zero). If follows that there are 8 ways to choose the third digit since it cannot be the 



© 2010 MATHCOUNTS Foundation. All rights reserved. MATHCOUNTS Mini Solution Set

same as the first or second digits. Finally there are 7 ways to choose the fourth digit since it 
cannot be the same as the first, second or third digits. Therefore, there are a total of 9 × 9 × 
8 × 7 = 4,536 positive four-digit numbers that have no digit repeated. That means there are 
9,000 ‒ 4,536 = 4,464 positive four-digit numbers in which a digit is repeated. That represents 
4,464/9,000 = 0.496 = 49.6% of all positive four-digit numbers.

Further Exploration
13. Suppose a set has n items. Recall from the MATHCOUNTS Mini presentation the table used 
to count the number of subsets of various sized sets. 

# terms 
in subset  0 1 2 3 4 Total

{M} 1 1 � � � 2
{M, A} 1 2 1 � � 4
{M, A, T} 1 3 3 1 � 8
{M, A, T, H} 1 4 6 4 1 16

Given a set of n items, to determine the number of subsets containing one term we essentially 
are calculating nC1. Similarly, to determine the number of subsets with two, three, ..., n items we 
calculate nC2, nC3, ..., nCn. For all subsets there is only one subset with zero terms, the empty set 
which corresponds to nC0 = 1. When we sum the number of items contained in all the subsets of 
a set of n items we see that the total is equivalent to 2n. 

As presented in the Mini, there is another way to think of the creation of subsets of a set of n 
items. Let S be a set of n items. When creating a subset of S each term in the set, s1, s2, ...., sn 
has two choices, to be in the subset, or not to be in the subset. 

 
 2  ×  2  ×  2  ×  2  × … ×  2 = 2n

s1 s2 s3  s4, …,  sn

►


